Representation volume and higher dimensional geometries

Yi Liu

(Joint with Pierre Derbez, Hongbin Sun, and Shicheng Wang)

Beijing International Center for Mathematical Research, Peking University

Moscow, July 2017

Yi Liu (BICMR) RCCKT 2017 1 / 25

How to measure the complexity of a manifold?

Simplicial volume is ...

• a homotopy-type invariant for closed oriented manifolds of any dimension

- a homotopy-type invariant for closed oriented manifolds of any dimension
- introduced by M. Gromov

- a homotopy-type invariant for closed oriented manifolds of any dimension
- introduced by M. Gromov
- \bullet proportional to the hyperbolic volume for hyperbolic n-manifolds [Gromov-Thurston]

- a homotopy-type invariant for closed oriented manifolds of any dimension
- introduced by M. Gromov
- \bullet proportional to the hyperbolic volume for hyperbolic n-manifolds [Gromov-Thurston]
- proportional to the sum of the hyperbolic volumes of the hyperbolic pieces for prime 3-manifolds [Soma]

- a homotopy-type invariant for closed oriented manifolds of any dimension
- introduced by M. Gromov
- \bullet proportional to the hyperbolic volume for hyperbolic n-manifolds [Gromov-Thurston]
- proportional to the sum of the hyperbolic volumes of the hyperbolic pieces for prime 3-manifolds [Soma]
- "the least real amount of simplices to build a fundamental cycle"

- a homotopy-type invariant for closed oriented manifolds of any dimension
- introduced by M. Gromov
- \bullet proportional to the hyperbolic volume for hyperbolic n –manifolds [Gromov–Thurston]
- proportional to the sum of the hyperbolic volumes of the hyperbolic pieces for prime 3-manifolds [Soma]
- "the least real amount of simplices to build a fundamental cycle"
- the ℓ^1 -norm infimum of a rational singular cycle that represents the fundamental class

Seifert volume is ...

• a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$

- a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$
- introduced by R. Brooks and W. Goldman

- a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$
- introduced by R. Brooks and W. Goldman
- proportional to the geometric volume for $\widetilde{SL}_2(\mathbb{R})$ -geometric 3-manifolds

- a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$
- introduced by R. Brooks and W. Goldman
- proportional to the geometric volume for $\widetilde{SL}_2(\mathbb{R})$ -geometric 3-manifolds
- vanishing for self-dominating 3-manifolds [spherical 3-manifolds, virtual torus bundles over a circle, etc.]

- a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$
- introduced by R. Brooks and W. Goldman
- proportional to the geometric volume for $\tilde{SL}_2(\mathbb{R})$ -geometric 3-manifolds
- vanishing for self-dominating 3-manifolds [spherical 3-manifolds, virtual torus bundles over a circle, etc.]
- possibly vanishing or nonvanishing for other 3-manifolds

Seifert volume is ...

- a representation volume for closed oriented 3-manifolds associated with the geometry $\widetilde{SL}_2(\mathbb{R})$
- introduced by R. Brooks and W. Goldman
- proportional to the geometric volume for $\tilde{SL}_2(\mathbb{R})$ -geometric 3-manifolds
- vanishing for self-dominating 3-manifolds [spherical 3-manifolds, virtual torus bundles over a circle, etc.]
- possibly vanishing or nonvanishing for other 3-manifolds
- virtually nonvanishing for graph manifolds, mixed manifolds, and hyperbolic mainifolds of dimension 3 [DLSW 2016]

Yi Liu (BICMR) RCCKT 2017 4 / 25

Simplicial volume and Seifert volume are examples of domination invariants in dimension 3.

Simplicial volume and Seifert volume are examples of *domination* invariants in dimension 3.

For a general dimension n, a domination invariant of closed oriented n-manifolds is ...

• a homeomorphism invariant v valued in $[0, +\infty]$ such that $v(M) \ge |\deg f| \cdot v(N)$ holds for all maps

Simplicial volume and Seifert volume are examples of *domination* invariants in dimension 3.

For a general dimension n, a domination invariant of closed oriented n-manifolds is ...

- a homeomorphism invariant v valued in $[0, +\infty]$ such that $v(M) \ge |\deg f| \cdot v(N)$ holds for all maps
- introduced to detect finiteness of the mapping degree set D(M, N) between closed oriented manifolds

Yi Liu (BICMR)

Simplicial volume and Seifert volume are examples of *domination* invariants in dimension 3.

For a general dimension n, a domination invariant of closed oriented n—manifolds is ...

- a homeomorphism invariant v valued in $[0, +\infty]$ such that $v(M) \ge |\deg f| \cdot v(N)$ holds for all maps
- introduced to detect finiteness of the mapping degree set D(M, N) between closed oriented manifolds
- ullet interesting especially when v is always finite and is sometimes nonvanishing

Yi Liu (BICMR)

 $What \ is \ the \ definition \ of \ Seifert \ volume?$

Representation volume for Seifert space geometry

• SETTINGS:

 (X, G, ω_X) [the geometry $(\widetilde{\operatorname{SL}}_2(\mathbb{R}), \operatorname{Iso}_e\widetilde{\operatorname{SL}}_2(\mathbb{R}))$ and a G-invariant volume form ω_X of X] $\mathcal{R}(M, G)$ [the set of representations $\rho \colon \pi_1(M) \to G$ for a closed oriented 3-manifold M]

• OUTPUT:

 $\operatorname{Vol}_{G,X,\omega_X}(M,-)\colon \mathcal{R}(\pi_1M,G)\to \mathbb{R}$ [well defined by the expression $\operatorname{Vol}_{G,X,\omega_X}(M,\rho)=\int_{\mathcal{F}}D_{\rho}^*\omega_X$ where $D_{\rho}\colon \widetilde{M}\to X$ is a ρ -equivariant developing map] $\operatorname{V}(M,G)\in [0,+\infty)$ [well defined by the expression $\operatorname{V}(M,G)=\sup_{\rho\in\mathcal{R}(\pi_1M,G)}|\operatorname{Vol}_{G,X,\omega_X}(M,\rho)|]$

• PROPERTIES:

domination inequality, finiteness, and nontriviality [Brooks–Goldman]

- 4 B > 4 B > 4 B > - B - 외익()

And representation volumes in general?

Representation volume in Seifert space geometry

• SETTINGS:

$$(X, G, \omega_X)$$

 $\mathcal{R}(M, G)$

• OUTPUT:

$$\operatorname{Vol}_{G,X,\omega_X}(M,-)\colon \mathcal{R}(\pi_1M,G)\to \mathbb{R}$$

 $\operatorname{V}(M,G)\in [0,+\infty)$

 PROPERTIES: domination inequality, finiteness, and nontriviality

Representation volume in general

• SETTINGS:

 (X, G, ω_X) [a connected real Lie group G, and a proper and contractible G-homogeneous space X, and a G-invariant volume form ω_X of X] $\mathcal{R}(M, G)$ [requiring $\dim M = \dim X$]

• OUTPUT:

$$\operatorname{vol}_{G,X,\omega_X}(M,-) \colon \mathcal{R}(\pi_1 M,G) \to \mathbb{R}$$

 $V(M,G) \in [0,+\infty]$

• PROPERTIES:

domination inequality [OK], finiteness(?), and nontriviality(?)

◆ロト ◆部ト ◆草ト ◆草ト ■ ぞく○

Theorem (DLSW 2017)

Suppose that G is a connected real Lie group which contains a closed cocompact connected semisimple subgroup. Let X = G/H be a homogeneous space furnished with a G-invariant volume form, where H is a maximal compact subgroup of G. Then for any oriented closed smooth manifold M of the same dimension as X, the volume function

$$\operatorname{vol}_G \colon \mathcal{R}(\pi_1(M), G) \to \mathbb{R}$$

takes only finitely many values on the space of representations $\mathcal{R}(\pi_1(M), G)$. Moreover, there exists some aspherical M for which vol_G is not constantly zero.

◆ロト ◆御ト ◆恵ト ◆恵ト 恵 めへで

11 / 25

Yi Liu (BICMR) RCCKT 2017

What does the theorem say concretely?

List by dimension

The pair (X, G) as assumed is a model geometry according to W. P. Thurston. The theorem applies to ...

- 2d geometries: $(\mathbb{H}^2, \mathrm{PSL}(2, \mathbb{R}))$
- 3d geometries: $(\mathbb{H}^3, \mathrm{PSL}(2,\mathbb{C})), (\widetilde{\mathrm{SL}}_2(\mathbb{R}), \widetilde{\mathrm{SL}}_2(\mathbb{R}) \times_{\mathbb{Z}} \mathbb{R})$
- higher dimensional families:
 - symmetric spaces of noncompact type
 - $\blacktriangleright \left(\widetilde{\operatorname{SL}}_2(\mathbb{R}) \times_{\alpha} \widetilde{\operatorname{SL}}_2(\mathbb{R}), \operatorname{Iso}_e(\widetilde{\operatorname{SL}}_2(\mathbb{R}) \times_{\alpha} \widetilde{\operatorname{SL}}_2(\mathbb{R}))\right) \text{ for a rational } \alpha.$

Compare the non-example families:

- symmetric spaces of compact type
- abelian, nilpotent, and solvable geometries
- $\bullet \ \left(\widetilde{\operatorname{SL}}_2(\mathbb{R}) \times_{\alpha} \widetilde{\operatorname{SL}}_2(\mathbb{R}), \operatorname{Iso}_e(\widetilde{\operatorname{SL}}_2(\mathbb{R}) \times_{\alpha} \widetilde{\operatorname{SL}}_2(\mathbb{R})) \right) \text{ for an irrational } \alpha.$

Yi Liu (BICMR) RCCKT 2017 13 / 25

"Happy families are all alike; every unhappy family is unhappy in its own way."

Yi Liu (BICMR) RCCKT 2017 14 / 25

Comparison of volumes

The following comparisons of representation volumes hold in general:

- (the domination inequality) $V(M',G) \ge |\deg(f)| \cdot V(M,G)$ if $f \colon M' \to M$
- (the induction inequality) $V(M, G') \leq V(M, G)$ if $\phi \colon G' \to G$
- (the connected sum inequality) $V(\#_i M_i, G) \leq \sum_i V(M_i, G)$ for finite connected sums
- (the product inequality) $V(\prod_i M_i, \prod_i G_i) \ge \max_{\sigma \in \mathfrak{S}(I)} \{\prod_i V(M_i, G_{\sigma(i)})\}$ for finite direct products

Yi Liu (BICMR) RCCKT 2017 15 / 25

None of the above are equalities in general.

16 / 25

Yi Liu (BICMR)

Example: strict domination inequality

Take G to be either $PSL(2, \mathbb{C})$ or $\widetilde{SL}_2(\mathbb{R})$.

There exists a closed oriented 3-manifold M with vanishing V(M,G), whereas V(M',G)>0 holds for some finite cover M' of M. [DLW 2015]

So V(M',G) > |deg(f)| V(M,G) holds for the covering map $f: M' \to M$.

◆ロト ◆個ト ◆見ト ◆見ト ■ からで

Example: strict induction inequality

Take G to be $\widetilde{\mathrm{SL}}_2(\mathbb{R})$ and G' to be $\widetilde{\mathrm{SL}}_2(\mathbb{R}) \times_{\mathbb{Z}} \mathbb{R}$.

Consider an oriented closed 3-manifold M which is a Seifert fibered space with the symbol (2,0;3/2). The base 2-orbifold is a closed oriented surface of genus 2 and with a cone point of order 2, so it has Euler characteristic $\chi = -5/2$. The (orbifold) Euler number of the Seifert fibration equals e = 3/2.

Then an explicit formula shows

$$V(M, G') = 4\pi^2 \times (-5/2)^2/|3/2| = 50\pi^2/3$$
 whereas $V(M, G) = 4\pi^2 \times 1^2 \times (3/2) = 6\pi^2$.

So V(M, G') < V(M, G) holds for this case.

- 4 日 ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q CP

Example: strict connected sum inequality

Take G to be $\mathrm{PSL}(2,\mathbb{C})$ and Γ be a torsion-free uniform lattice of G. Denote by $M=\mathbb{H}^3/\Gamma$ be the closed hyperbolic 3–manifold with the induced orientation.

The set of volumes for all representations of $\pi_1(M) \cong \Gamma$ in G consists of finitely many real values $v_1 < v_2 < \cdots < v_s$. If we require further that M admits no orientation-reversing self-homeomorphism, it is implied by the volume rigidity that $v_s = \operatorname{Vol}_{\mathbb{H}^3}(M)$ and $|v_1| < v_s$ [Besson–Courtois–Gallot]. The set of volumes of the orientation-reversal -M consists of $-v_s < \cdots < -v_2 < -v_1$.

Then the set of volumes for the connected sum M#(-M) consists of all the values $v_i - v_j$, and $V(M\#(-M), G) = |v_s - v_1| < 2v_s$. But we have $V(M, G) = V(-M, G) = v_s$.

So V(M#(-M), G) < V(M, G) + V(-M, G) in this case.

◆ロト ◆団ト ◆豆ト ◆豆ト □ めへで

Example: strict product inequality

Take G to be $\widetilde{\mathrm{SL}}_2(\mathbb{R}) \times \mathrm{PSL}(2,\mathbb{C})$. Let S be the unit tangent bundle of a closed oriented hyperbolic surface, and H be a closed oriented hyperbolic 3–manifold. Let $M_S = S \times S$ and $M_H = H \times H$.

It can be shown that $V(M_S, G)$ must be zero, by computing the cohomology class of the pull-back volume form. However, it is obvious that $V(M_S \times M_H, G \times G) > 0$.

So $V(M_S \times M_H, G \times G) > V(M_S, G) \times V(M_H, G)$ in this case.

Yi Liu (BICMR)

How is the theorem proved?

A reminder of the statement

Theorem (DLSW 2017)

Suppose that G is a connected real Lie group which contains a closed cocompact connected semisimple subgroup. Let X = G/H be a homogeneous space furnished with a G-invariant volume form, where H is a maximal compact subgroup of G. Then for any oriented closed smooth manifold M of the same dimension as X, the volume function

$$\operatorname{vol}_G \colon \mathcal{R}(\pi_1(M), G) \to \mathbb{R}$$

takes only finitely many values on the space of representations $\mathcal{R}(\pi_1(M), G)$. Moreover, there exists some aspherical M for which vol_G is not constantly zero.

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ からで

Yi Liu (BICMR)

Ingredients of the proof

- Based on the semisimple case: If G is semisimple, the idea has been sketched by Goldman.
- Working with full central extension: When G has torsion-free (finitely generated abelian) center Z, we prove the theorem for the full central extension $G \times_Z Z_{\mathbb{R}}$ where $Z_{\mathbb{R}} = Z \otimes \mathbb{R}$. We characterize $\mathcal{R}(\pi, G \times_Z Z_{\mathbb{R}})$ and generalize Goldman's idea to the full central extension, which has a reductive Lie algebra.
- Working with cocompactly closed semisimple Lie groups: Any connected real Lie group G that contains a closed cocompact connected semisimple Lie subgroup fits into an exact sequence of homomorphisms of Lie groups

$$\{0\} \longrightarrow Z(G)_{\mathtt{tor}} \longrightarrow G \longrightarrow \hat{G}_{\mathbb{R}} \longrightarrow T \longrightarrow \{0\}$$

where $Z(G)_{tor}$ is the maximal compact central subgroup of G, and T is a connected compact abelian Lie group, and $\hat{G}_{\mathbb{R}}$ is the full central extension of a connected semisimple Lie group \hat{G} with torsion-free center.

Yi Liu (BICMR) RCCKT 2017 23 / 25

Conclusions

- It seems appropriate to treat representation volumes as associated with geometries in the sense of Thurston.
- For cocompactly closed semisimple Lie groups, the associated representation volume is essentially determined by its semisimple part.
- We suspect that these essentially cover all the interesting representation volumes.

24 / 25

Yi Liu (BICMR) RCCKT 2017

Thank you for your attention.